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Protein Folding: Optimized
Sequences Obtained by
Simulated Breeding in

a Minimalist Model

For a minimalist model of protein folding, which we introduced recently. we investigate various
methods 1o obtain folding sequences. A detailed study of random sequences shows that, for this
model, such sequences wusually do not fold to their ground states during simulations. Straight-
Sforward techniques for the construction of folding sequences, based solely on the target structure,
Sail. Wedescribe indetail an optimization algorithm, based on genetic algorithms, for the “sim-
wlated breeding ' of folding sequences in this model. We find that, for any target stricture studied,
there is not only a single folding sequence but a patch of sequences in sequence space that fold 1o this
structure. In addition, we show that, much as in real proteins, nonhomologous sequences may fold
to the same target structure. . © 1997 John Wiley & Sons, Inc.

INTRODUCTION

While a detailed. microscopic analysis of the pro-
tein folding process remains impossible using cur-
rently available experimental or computational
techniques, simplified models of protein folding
can be studied in order to learn about the generic
properties of folding processes in heteropolymers.
Common simplifications include the representa-
tion of amino acid residues by one or a few effective
atoms, the analysis of chain dynamics in lattice
spaces, the use of spaces with reduced dimension-
ality, and the substitution of the various different
modes of interaction between residues by a simple
contact potential. The aim of such minimalist
models is not to model particular proteins of
known amino acid sequence but. rather. to eluci-
date the necessary conditions for folding processes
in linear heteropolymers. Such insights may also be
useful for the future development of more realistic
model treatments, since they might point out
which features are crucial to the tolding process
and thus have to be modeled carefully.
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Recently, we have introduced a simple model of
secondary and tertiary structure formation in
polypeptides, '~} based on the Lifson-Roig model
for the helix—coil transition in amino acid homo-
polymers.* and on models for polymer crystalliza-
tion.™ The essential feature of the model is the
combination of the helix-coil dynamics with a sim-
plified form of tertiary interactions between « heli-
ces. For the homopolymer case, we have shown
that the helix—coil transition with its continuous
mode of transition and its tendency to produce
only a single. long helix in the low temperature re-
gime i1s modified to exhibit a first-order phase tran-
sition, as to be expected for proteins, too, and to
establish structures that resemble globular proteins
in average helix number and average helix
length.'*” Since our model is easily implemented
and does not require excessive computational
effort, it can already be studied on personal com-
puters. On the other hand, given access to modern
workstations, it becomes possible to study large en-
sembles of sequences and to obtain reliable statis-
tics derived from many simulation runs. This
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seems especially important in the light of recent
findings that suggest proteins do not usually fold by
a single, specified pathway, but use a multitude of
possible routes to reach their target structures.®’
We note that our model emphasizes secondary struc-
ture dynamics, and therefore differs from most other
model systems currently under study.'®" Since ge-
neric properties of folding are expected to hold for
all model types, this offers the change to reexamine
results obtained with other models.

When studying a minimalist model, one has to
demonstrate, first of all, that the model shows dy-
namic processes resembling protein folding, i.e.,
that there are folding sequences. In some cases,
such sequences can be obtained from simple in-
spection by introducing interaction patterns that
favor native substructures.?'->* However, this is not
likely to hold for all protein models, let alone for
proteins. Therefore, in recent years, there have
been attempts to devise general algorithms for ob-
taining folding sequences in simple protein
models. For the heteropolymer case of our model,
we have shown that random sequences usually do
not show folding-like behavior.? Folding sequences
could not be obtained using methods described for
other simplified models of protein folding.>'’
However, we were able to devise an optimization
procedure that yielded folding heteropolymer se-
quences for all target conformations studied.’
Here, we describe and discuss our results in more
detail.

DESCRIPTION OF THE MODEL

The conformation of a polypeptide of length L is
represented by a string of labels ¢, = A, ¢*, or ¢,
where i ranges from 1 to L. The conformation A
corresponds to residues with dihedral angles char-
acteristic of a helices, whereas ¢* and ¢° represent
random coil residues. Two helices separated solely
by ¢ residues are assumed to be in contact,
whereas helices with at least one residue with con-
formation other than ¢" between them are not in
contact. Thus, the interconversion ¢’ < ¢* allows
to model the formation and disruption of tertiary
contacts between helices. The free energy of a se-
quence { 4; } in conformation { ¢, } is given by

L-1

F({oi}-{Ai})= z H(O’,,_l,O',,, 0’,,+))

n=2

X [AE(A,-2) + AE(A,42)]/2

1-1 L

+z Z Cn.m({al})

n=1 m=n+1

X [k(Ay) + k(A)]1/2

1.
=T 2 AS(oy,, 4y) (1)

n=1

The three terms in Eq. (1) describe the contribu-
tion of hydrogen bonds, tertiary interactions, and
entropic contributions due to /oca/ conformation
space restrictions, respectively.

Three successive monomers must be in helical
conformation in order to be spanned by a hydrogen
bond. Therefore, if 6,_, = 0, = 6,., = h, there is a
hydrogen bond linking residues n — 2 and »n + 2.
We describe this by defining H(o,_,, 6, 0,41) = 1
in this case, and zero otherwise. The strength of the
hydrogen bond between two monomers n — 2 and
n + 2 is determined by the mean of their respective
AF parameters. For consistency, two dummy coil
residues Ay and A;,,, with AE(A4y) = AE(A;,,)
= (), are added, which allow the formation of hy-
drogen bonds bridging the first three or last three
residues, respectively, but which do not contribute
otherwise to F.** Note that in random coil
stretches, identified by the absence of hydrogen
bonds, some monomers (or even pairs of
monomers) may attain the helical conformation
and will then be labeled 4, accordingly. However,
these monomers will not contribute to the hy-
drogen bond term in Eq. (1) and will not be con-
sidered part of helices.

Any two helices separated solely by ¢* residues
are considered to be in contact with each other. In
our simplified treatment of the tertiary interac-
tions, we assume helices to be arranged in paraliel
and in register (Figure 1). All the residues of the
shorter helix are then taken to be in contact with
their counterparts on the longer helix. This can be
formulated as C,,,,({ s, }) = | if residues n and m
are in contact in chain conformation {g¢;}, and
zero otherwise. The contact energy is simply taken
as the mean of the respective contact parameters A
of the two residues in contact.

Finally, the entropic term represents contribu-
tions to the system’s entropy which arise from focal
conformation space restrictions. We denote by
V' (o;, A) the conformation space volume accessi-
ble to a monomer of type A with local conforma-
tion o;. We then define the local conformational
entropy by AS(o;, A) = ky n[V(e;,, H/V(c*,
A}]. By this definition, the conformational entropy
of the local conformation ¢ is arbitrarily set to



FIGURE 1 Tertiary interactions between « helices, as
described in the model. (Top) Three helices of lengths 6,
4. and 4 monomers, respectively (open rectangles), with
two interhelical contacts (black bars between helices).
{ Bottom) The contact between the second and third hel-
ices has been broken.

zero for all monomer types A4, which is convenient
since we are only concerned with relative entropies
in the following. For simplicity. we also set AS(¢",
A) = 0 for all residue types A, i.e., we assume equal
a priori probabilities for the occurrence of the two
different random coil conformations. [ Note that
Eq. (1) covers the more general case of AS(¢’, A)
# (.] Since the conformation space volume V' (A, A)
accessible to monomers in / conformation is smaller
than that for monomers in random coil conforma-
tions, as mirrored in a Ramachandran plot.>* the
conversion ¢* < &, for example. is accompanied by
a change in conformational entropy.

Chain conformations can often be characterized
by what will be called the chain structure @, speci-
fied by the positions and lengths of helices and the
positions of interhelical contacts. Chain structures
will be described by the following shorthand nota-
tion: (1) lengths of helices are set in boldface, (2)
lengths of interhelical loops are set as subscripts be-
tween the helix lengths. and (3) loop lengths are set
in brackets when there is no contact between the
two adjacent helices. The chain structures in Figure
1 are @,,, = 16:4:4, and Cpyom = 16:42)4. Since
the local conformation of the first monomer in
structure €,,, may be either ¢’ or ¢*, two different
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chain conformations correspond to this structure.
For chain structure @u,,m In the figure, in addi-
tion, the local conformations of the two monomers
between the second and third helices may be either
one of the three possibilities ¢’c*, ¢*¢*, or ¢*¢”
{but not ¢"¢", as no contact is established), yield-
ing a total number of six different chain conforma-
tions for this structure. For a more detailed descrip-
tion of the relation between chain conformations
and chain structures, see Appendix A.

Any sequence of residues { A4, },i=1,..., L,
is completely characterized by the parameter sets
{AE(A;)) ), {k(A4,) ). and {AS(A, A, )| . We allow
two values for each of these parameters and con-
sider the 2" = 8 monomer types resulting from the
combination of the possible parameter values as
described in Table I. All the results presented in the
following have been obtained at a constant temper-
ature with &,7 = 0.108 | AE(A)|. The system size
is L. = 100 monomers for the results presented here.

Since AS(/) < 0 for all monomer types ( Table ).
the entropic term in Eq. (1) will dominate the others
in the high temperature range, and the random coil
conformations ¢’ and ¢® will prevail, independently
of the polymer sequence. For low temperatures, how-
ever, the energetic contributions from hydrogen
bonds and tertiary contacts will cause the formation
of helices and interhelical contacts. Precisely which
chain structures will be established depends on the
polymer sequence. In the following. the chain struc-
ture corresponding to the chain conformation with
the lowest value of F at the above temperature will be
referred to as its ground state.

CHARACTERIZATION OF RANDOM
SEQUENCES

Ground States

In Ref. 3. we have discussed the phenomenon of
frustration in the model presented here. In frus-

Table I Description of Monomer Types

Parameter Values

Monomer AE AS(h)/ kg k p
A -1.0 -2.0 -0.6 1/6
B -1.0 -2.0 +0.3 1/6
C -1.0 —3.567 -0.6 1/8
D +0.5 -2.0 -0.6 1/8
E -1.0 —3.567 +0.3 1/8
F +0.5 -2.0 +0.3 1/8
G +0.5 -3.567 -0.6 1/12
H +0.5 —3.567 +0.3 1/12
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trated systems, the various /ocal conditions for en-
ergy minimization cannot all be satisfied simulta-
neously, i.e., the system state with minimum global
energy will necessarily contain local substructures
with unfavorable energy. The phenomenon of frus-
tration was first described for spin glasses®*?’ but
is known to occur in proteins, t00.2%%° Frustrated
systems are characterized, in general, by compli-
cated energy landscapes with various structurally
different local minima separated from each other
by high barriers. The ground state has to be sought
among all these minima, and will therefore be
difficult to obtain. Deterministic algorithms, like
the method of steepest descent, will only find /oca/
minima in the vicinity of the starting point of the
optimization. The global energy minimum cannot
be found reliably with such methods. In principle,
one would have to search the whole conformation
space systematically to make sure that a given min-
imum is indeed the global one.

In recent years, various stochastic optimization
algorithms have been developed for studying such
complicated energy landscapes.’*-*> These algo-
rithms do not search the whole state space of the
system, and thus are not guaranteed to find the
global energy minimum either. However, they usu-
ally produce system states with very low energy,
1.e., at least close to the global minimum, within
short times. Stochastic optimization algorithms are
usually applied several times to a problem; the low-
est state found in any run is then taken to be the
ground state.

Since we expect frustration to occur in random
sequences for the model presented here,? we have
followed two different stochastic optimization
strategies to identify structures low in F. The first
procedure is the Metropolis-Monte Carlo (MC)
simulation scheme. As an elementary step, a
monomer is chosen randomly, and an attempt is
made at altering its local conformation. Such an
attempt is accepted or rejected according to the
Metropolis criterion.>* This criterion ensures an
overall tendency to go downhill in F yet, at the
same time, enables the system to go uphill occa-
sionally, so that it is not necessarily trapped in local
minima. Therefore, the Metropolis algorithm is
suited to explore rough energy landscapes. A
Monte Carlo step consists of L elementary steps,
during which, on the average, each monomer is
chosen once for an attempt at changing its confor-
mation. The optimization procedure employed
here consists of Metropolis-MC computer simula-
tions of 5000 MC steps length, starting in the (¢*),

chain conformation. Such a simulation will be
called a “folding experiment” in the following.

As a second, completely different approach to
structural optimization, we have used a genetic al-
gorithm*®** specified as follows. Chain conforma-
tions are represented as chromosomes with L
genes. (A) As a starting point, a population of N
= 4000 chromosomes is generated by randomly as-
signing the alleles 4 and ¢°, with p(h) = 0.8 and
p(c®) = 0.2, respectively, to their genes. For conve-
nience, the local conformation ¢* is not considered
here, because compact chain structures, where all
possible interhelical contacts are established, are
expected for most of the ground states. (B) As the
target function to be optimized, we choose
F({o:}) =In[—1000(F({o;}) — 1)], which in-
creases monotonically with decreasing F. (C)
Chromosomes are perpetuated to the next genera-
tion following the “remainder stochastic sampling
with replacement” algorithm®* (see Appendix B
for details). (D) We choose a mutation rate of p,,,
= 0.005 per gene per generation, and simple cross-
ing-over with p, = 0.25 per chromosome per gener-
ation. This procedure is repeated over 500 genera-
tions, and the chromosome, i.e., the chain confor-
mation, lowest in Fis retained. It is then subjected
to 500 MC steps of the Metropolis-MC simulation
as described above, in order to check for even bet-
ter conformations in its vicinity in conformation
space. (In addition, during these short MC simula-
tion runs, monomers in ¢* conformation may be
introduced to allow for noncompact ground
states.)

The above described methods were applied to a
set of 110 random sequences that were generated
from the monomer types of Table I, using the a pri-
oni probabilities p given in the table. For each ran-
dom sequence, 50 folding experiments and 50
structural optimizations by genetic algorithm were
done. For two of the 110 sequences, the lowest
value of F found during these optimization proce-
dures was fourfold degenerate, i.c., represented by
four different chain structures; 16 other sequences
had two different chain structures with minimum
F. (We note that degenerate chain structures for
any particular sequence resemble each other
closely in all the cases observed.) All in all, the
structural optimization procedures yielded a total
of 122 chain structures for the 110 random se-
quences studied. Fifteen of these 122 chain structures
were found to be noncompact, i.e., not all possible in-
terhelical contacts were established due to unfavorable
interactions between some of the helices. In 85 of these
122 cases, both optimization techniques yielded iden-
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FIGURE 2 Distnibution of lowest F values for 110

random sequences, as determined by folding experi-
ments and/or genetic algorithm as described in the text.

tical results: in 7 cases. the genetic algorithm found the
lowest conformation in ', in 30 others, the Metropolis
algorithm (folding experiments) was more successful.
The good agreement of two independent optimization
procedures indicates that, in most cases, the true
ground states have been identified. Figure 2 shows the
distribution of the F values of the ground states for all
110 sequences.

Folding Behavior

Given the ground states of the random sequences un-
der study, we next ask for their folding performance.
As a folding criterion, we expect a folding sequence to
reach its target structure reproducibly during repeated
folding experiments, and to be stable in this structure.
In addition, we require folding sequences to fold rap-
idly to their target structure. This third part of the cri-
terion may appear somewhat artificial, since there is
no evidence that particularly fast-folding sequences
have actually been selected during natural evolution.
However, proteins employ folding mechanisms that
are rapid at least compared to an unbiased random
search in conformation space, a feature known as Lev-
inthal’s paradox.™ In addition, we include this crite-
rion for practical reasons. Fast-folding sequences will
allow us to study many folding trajectories, and thus
to elucidate efficient folding strategies, which is an es-
pecially important task for a minimalist model of pro-
tein folding.

The folding experiments described in the fore-
going section already reveal that, in general, ran-
dom sequences do not fold reproducibly to their
respective ground states: for more than half of the
sequences, the ground state is reached in fewer than
10% of the folding experiments (data not shown).
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In addition, simulations were performed with the
sequences starting in their ground state structures.
It was determined how much simulation time was
spent, on the average, in the respective chain struc-
ture. The results of the folding and stability studies
are summarized in Figure 3. Given the above fold-
ing criterion, folding sequences are to be sought in
the righthand lower back corner of the figure. Only
very few of the studied 110 random sequences
come even close to being folding sequences; most
of them are clustered in the lefthand upper front
corner of the figure. While several of the sequences
reach their ground states reproducibly, they are
usually not stable there. On the other hand, some
sequences are comparatively stable in their target
structures once they have reached them, but fail to
do so in most of the folding experiments.

CONSTRUCTION OF FOLDING
SEQUENCES

Straightforward Approaches
to the Problem

In the foregoing section it was shown that folding
sequences are not readily obtainable from a ran-

Stability . . -

Folding
time

Success
rate

FIGURE 3 Folding performance as mirrored by aver-
age success rate and average folding time (from folding
experiments), and average stability in the ground state,
for 110 random sequences. Sequences for which the
ground state was determined by genetic algorithm, i.e.,
which did not fold to the ground state, are shown with
zero success rate and maximum folding time (upper
left). Note that for sequences with low average success
rate, the values of average folding time and average suc-
cess rate are to be viewed as rough estimates only. Aver-
age stability values were determined separately in 50 sim-
ulations each. starting in the ground state,
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FIGURE 4 Chain structure @; (Table I1I) shown as
described in Figure 1.

dom search in sequence space. That leaves us with
the task of demonstrating that there are sequences
that fulfill the above folding criterion in the model
presented here. In addition, one would like to be
able to construct sequences that not only fold, but
fold to a given specific structure. Thus, the question
of sequence design arises.

In Ref. 2, it was shown that the construction of
folding sequences is a nontrivial task in the model
presented here. As a first approach, one might con-
sider to look for a sequence that minimizes F for a
given target structure. However, such a sequence op-
timization might even yield a type A homopolymer,
since monomers of type A ( Table I) optimize all pos-
sible interactions in any chain conformation. In fact,
the minimum value of F for any chain conformation
{Ui} iS given by Fmin({ai }) = min{A,':F({Ul }’
{A;})=F({s,},A,), where L denotes the number
of monomers in the chain. However, during fold-
ing experiments, the type A homopolymer will fold
to various different chain structures (compare with
Refs. 1 and 2); obviously, it cannot be a folding
sequence for any given chain structure. Therefore,
optimization with the constraint of constant com-
position has been proposed to prevent the optimi-
zation algorithms from converging to a homopoly-
mer.'” However, in Ref. 3 it was shown that, for the
model studied here, this optimization scheme does
not produce folding sequences either.

Another approach is to selectively stabilize na-
tive interactions.?!*? Taking the chain structure @,
(Figure 4 and Table III below) as an example, one
can choose for any position the monomer type that

favors only those interactions occurring at this po-
sition, but disfavors all other interactions. By this
procedure, one arrives at the sequence

{A,' }3 = D3EA3B3A3EHED3EHEAD2
AEAJEHEA (EHLEA :EH,EA | ,EA (E

which still satisfies F(C3, {A4,;}3) = Fnin(€3)
= —73.30. However, in 10 folding experiments, the
sequence {4, }; invariably yielded chain structures
lower in F, among them €5. = 3,15;14,17,13,14,11
with a value of F(@5, { A, }3) = —75.78. Therefore,
the sequence { A;}; with optimized native interac-
tions does neither fold to the target structure @;, nor
have it as its ground state. Note that in @5, some of
the monomers are locally frustrated in order to en-
able the chain as a whole to form a structure lower in
F. This frustration is the reason that F( @5, {4, }3)
> Fmin(@3’) = —94.01.

Figure 5 illustrates these findings schematically:
straightforward attempts to construct folding se-
quences, which rely solely on the target structure
as input information, fail for the model presented
here. Rather, they usually produce sequences that
either do not fold at all or fold to chain structures
different from the target structure.

An Algorithm for “Simulated Breeding”
of Folding Sequences

Given the above folding criterion, the search for a
folding sequence can be viewed as an optimization

E_" T
3 :
‘5 1}
E )
7] i g
Sequence Optimization
----------------- e = = = -
Ca
Instability
Cb """""""""""""""""""""
{Ala

Sequence

FIGURE 5 Schematic minimization of F in sequence
and structure space. Holding the structure fixed at @,,
one can always find a sequence { 4; }, with F(€,, {4, },)
= Fanin(@,) by sequence optimization. However, for this
sequence, there will usually be another chain structure
Cowith F(C,, { A;},)< F(C,, | A4;},). resulting in struc-
tural instability.



Table 11 Random sequences, L = 100
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Composition

Sequence

RS, A2:BC-D4E ,F 0GeH 2
RS, A B C D LEF 106G H,
RS, A B C D EF -G Hg
RS, A2B7C0DE  FoG) H
RS AyBCieDE:F(.G;H
RS, A 1B CiiDoE | FG-H
RS, AuB,CiDE F G oH
RSy A B2 Ci:DyE 4 F G H;
RS, AB, Ci:DyEsF G oHs
RS0 A3 B Ci:DoEF-G:H,

GADFDBBAHBHEAAABFFDACCBCA
AEHEEAHGBBCFBGACBECFCAAEH
EEDCEHACDADHBGFFHEBEAEBEB
FHFGBHBCDAAEHCDCAABGFAHAA
ACFBFABADBHECGECAADDHDABE
ACHCEAHDADHBFEABABFFHECDD
CAEEAAFFFGHDCCAHBDAEEEEAB
GFCBECEBCEDDAHEEEEGCDDBEF
AADEDAEAEEDCBAHBDDADHCDED
BEDADCEBFAFEEHGBGEBGAFFDA
BBFHBCGFDFCHAFCEFGBGEFHAB
FDECABHABACDECDHFCABCGDAA
AHADBBDDEDHEAEHGHGAEHBABH
FEHACFGEEEGBEABAGGHHFCAAA
ACHFEBBCHBAGDCCAFBEACGFGD
EBBEFDBAFBGCBBDAAAGFBAHCC
GHCABAHDFGFDHBFCFCACBFBAD
CCBCCDBHHGAEACGACFBAFDADA
EEADFEACBBCGAHFBEEAHGEFAE
DFEBGCAAAHEBHBDCAHCHCEFED
HBFAECEEHAFAFFAGCBAACCADF
EBFDABHBHBBAADCBHFHBDEBDD
BCAFEHHFGCBDBEGGCFDDBBFEG
HBCGFFCHAGFFEACFCEHAAAAAC
HDBDBAEGDAACEFBFBCHDGDFGA
EEEEFBGHDDBCABBFFAFHGEBEH
HEFCGADEHHEEEABBCGGCAGFAE
BFCHABHEEADBGBBFDAFBHHHAF
BEDAADBAEFAEDFFFCHBEBFECB
FECGFBDFCHDFHCBFADEAABBBA
ABBBAFFABEFCECAAAFEFEBEBD
ADCBCHDABAHFCCHCABEEDCBBH
BCBEDEHEFBECFBBFEBCFCCGCA
GHEADFAEEBBBACHCEBDDECCAC
BFBBGAEDDBCGAFGHABFECBAAC
DAEDGBDBFAGGGGBBACFEADBAH
AFBAFABBAEADBBBCDDFECCBAA
DGEADACEFHACHECHFFAAEBGBH
ADAEAEBCAFFBEFFBEAAEAEAGE
HCFGDCDDBGGFGAECBGHBCEHCB

problem: For any given target structure, look for a
sequence that spends as much simulation time as
possible in the target structure duning folding experi-
ments. We have devised an optimization procedure,
based on genetic algorithms, which achieves this goal.

Of the 110 random sequences described above,
ten were chosen randomly. These sequences, la-
beled RS, to RS,,, are specified in Table II. In Ta-
ble 111, the ground states for these sequences are
given. Figure 4 shows the chain structure @, as an
example. In the following, we adopt the chain

structures of Table HI as target structures and start
our optimizations with the corresponding random
sequences.

Since, for a given target structure, it will, in gen-
eral, be impossible to construct a sequence that hits
the target structure at all, we first look for se-
quences for which the target structure corresponds
to a pronounced, albeit not necessarily global, min-
imum in F, 1.e., we select for stability in the target
structure. The genetic algorithm is formulated as
follows: ( A) For target structure @, (Table l11). we
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Table III Ground States of Random Sequences,
L =100

Sequence Chain Structure F

RS| @1 = 23]9]]711431076841616 —3009
RSz @2 = 11]8]8]529|9513|13552 _30l2
RS3 @3 = 3I93334195104136]4I101 -21.95
R54 @4 = |3|3|4555519115)]5215|7 —24.65
R55 @5 = 638183827|14z6481715 —28.35
R56 @5 = 11031211467571374241417 —-24.52
RS7 @7 = 151515|3|7|]2||348|42l2|47 _1808
RSg @g = |10311|3613|1829|142 —3133
RSg @9 = 20143]3|14|103]0|828| —31.67
RS]() @m = ]5120323111361529 -32.56

take N = 10 identical copies of sequence RS;
(Table I1) as the starting population. (B) For every
sequence, its fitness F is determined as the average
relative amount of simulation time spent in the
target structure during » = 10 short MC simula-
tions (usually 200 MC steps), starting in the target
structure. (C) The next generation is then built up
following the “remainder stochastic sampling with
replacement™ algorithm> (Appendix B). (D) For
every position in every sequence, the monomer
type at that position is mutated with p,,, = 0.005
to any other monomer type with equal probability,
i.e., neither the sequence compositions nor the a
priori probabilities of Table [ are conserved; every
sequence is chosen with p. = 0.25 for simple cross-
ing-over at a random site with a random partner.

Figure 6 (left-hand part) illustrates the optimi-
zation for three of the studied cases. The firness ¥,
i.e., the relative amount of simulation time spent
in the target structure, is shown as a function of the
generation number. In all of the 10 studied cases,
we obtained sequences that spent well over 50% of
the total simulation time in their respective target
structures after 150 to 250 generation cycles.

We select for folding sequences in a second op-
timization step. The corresponding genetic algo-
rithm runs as follows: (A) We use the resultant
population of the first optimization step as a start-
ing population. (B) For each sequence, its fitness F
is determined as the average relative simulation
time spent in the target structure during 10 folding
experiments, i.e., simulations over 5000 MC steps,
starting in the chain conformation (¢*),00. (C) and
(D) the selection mode for the next generation and
all other parameters remain as described above.

Figure 6 (right-hand part ) shows the time course
of three folding optimizations. After 70-230 gener-
ations, we obtained sequences that, averaged over

ten folding experiments, spent over 60% of the sim-
ulation time in the target. Note that this value is
lower than the maximum attainable stability, since
the folding process itself requires some time. For
each of the ten optimization procedures per-
formed, the sequence with the maximum observed
fitness was retained. These folding sequences are
labeled F| to F\o and are given in Table IV,
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FIGURE 6 Fitness of sequences during stability opti-
mization and folding optimization, respectively. (Solid
line) Average fitness in the population. ( Dashed line)
Maximum fitness in the population. ( Dotted line) Max-
imum fitness encountered so far during the optimiza-
tion. (Top) Optimization for chain structure ;.
(Middle) Optimization for chain structure €,. (Bottom)
Optimization for chain structure @,,.



Table IV Folding sequences, L = 100
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Composition

Sequence

F. A B CDE ((FsGoH
F Ay ByC 4Dy E F-G:H;
F; A7BCy Dy EF17GoHg
F.4 A ;B C D LE FoGoHg
Fs A2BC:Dy ELF) G 0H
Fe A B 1C D oE o F 1 :GsHy
F, A3B2Ci:DyEFiGeH
Fg A B2 CiD E5F G H
Fo A17B23C:DeE s FyGoHy
Fio A2B/CoD E:FsG, H,>

GEGCDBBCDAHEBAEBDFGAAEBAG
BFBECAHGEFCDBGAEBECCFADEH
EEDFBAACDEDHBGHGHEHEAABAB
HHFFFFECDHAECACAAABGCAHAA
AEFBBHCADABEAGBCAADGEDABB
ACHCEFCDADHBGAABABBFEECBD
AAEECABFFGHDCDCEAAAGEBEBB
AHFBCCEBCBFDAFFFFECCDFBEE
DHDECABEEEGEFBHEDDGFDEGFD
CBDEHAEAFDFEHHGBCAFGGCADE
FBFHBCFFDACAEAEFGBEHEFFAG
FFECAAAAAAGDBACHFACBCGFCB
EHADEBDCEDCCAEHGHGAEDAFBF
FEHACFGDEDABEAHAEGEDGDAAD
ECAFCBBCGEAGDDCABEEACFFDG
EEDEFDBAEBGGCBAHABFCBBCCC
AGBADAHHEDBHFBCAFGCCECEAH
GEBDEABHHGAGACFDDFFADGAHA
DEBDFACEEBCACFFAFEAFAHCAH
HFECGGAAGBGEBDCAEFCEDBDEA
HAAEEGECFBFEFEAGGBCEBCADE
EBABAECBHABAADEDCHHFDCBDF
CGADFGHFEEBDBFBACGDDFCHEH
HBAAFFBHADFGEECACEGAACBCA
ADBHBAECGFDCEFEDCCBGDDBCC
EEHACBDHDCAEABBFAABHGGFHH
BEHBDGDADHEDBFBBCCGBDGFAE
BFCHABEBCAHBFCAFDABHGHFBE
HCBABDAAAFAHDFFHHFCCFFBCB
FECAFBDFCHBGHCBGADEBABEEC
BFDBFEDABGBBFCCAABEFEFBED
BDCCBHFAEBAFECDBEFBEDEBBH
BABECFAGCBECBBBEEBCFCCGCA
HHEDBFABEBBBAHHFEBDBEAHAC
BAACHFBGDBCEAFGHAHFEBBHAC
BEEDGBDCAAEGGGBBAAFEADCGE
ADDAFACBAEBEDHACDDGACCAHD
DAFAEABCGFHCHEADFHBACBBBH
BGAEDEEBAHHGEBHAEADBGGAAE
HBHGDBCABGGGGAHEBFACCEABB

With each of the folding sequences of Table 1V,
100 additional folding experiments were per-
formed. The results are summarized in Table V
and illustrated in Figure 7. A comparison of the
random sequences ( spheres) and the optimized se-
quences F| to F,, (cubes) in the figure shows that
folding sequences have, indeed, been generated by
the described procedure. Given these folding se-
quences, it is now possible to study their thermo-
dynamic and kinetic characteristics and to com-
pare them to those of non-folding sequences. In

Ref. 2, we have shown that the folding sequences
obtained for our model do not necessarily have
spectra with a wide gap between the lowest and sec-
ond lowest possible values of F, which has been
proposed as a general criterion for folding se-
quences.'®'? In fact, we found that one sequence,
F3, folds fast and reproducibly to a target structure
that is not the ground state for this sequence.’ The
target structure, @y = 10511,3,13,18,9,14,, with
F(@g) = —26.573, differs from the ground state
structure, €. = ,10:11,3,3,13,18,9,14,, with
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Table V Folding Performance of Bred Sequences

Chain Successful MC Runs, Folding Time (MC steps) Average Stability (%)
Structure Sequence No. of 100 Mean + SD Mean + SD
é, F, 99 466 + 414 90.1+2.6
@, F, 93 326 £ 379 709 +2.3
G, | 2 93 1513 + 1005 84.1 £ 9.1
é, F, 88 956 + 828 828+94
(e Fs 80 1521 + 760 89.2+22
Gy Fe 88 1627 + 841 64.5+8.3
e, F, 93 1172+ 612 65.7+59
GOy Fg 83 909 + 647 73.3+44
@, Fy 94 1083 + 920 759 +9.1
(I Fo 96 1183+ 698 77.8+4.2

F(@g) = —27.339, by lacking a single, short he-
lix inserted in one of the loops. Another se-
quence, F;, has two nearly degenerate structures
at the bottom of its spectrum which, again, dif-
fer only by insertion of a short helix. However, @,
= ,5,5/5,3,7,12,,3.8,4:12\4;, with (@) = —27.344,
is reached in over 90% of the folding experiments,
whereas @7/ = 15,5151317112|37348|4212|47, with
F(@;.) = —27.339, is reached in less than 10% of
folding experiments. As the examples of F; and Fj
demonstrate, kinetic preferences can contribute
crucially to the folding performance of sequences.
A detailed study of the folding kinetics of se-
quences F to Fyy is under way.

Stability .,

Success
rate 1

FIGURE 7 Folding performance, represented as in
Figure 3. (Spheres) Results for random sequences RS, to
RS,y and the chain structures @, to @,,, given in Tables
il and 111 (Cubes) Results for the folding sequences F,
to F,, of Tables IV and V and chain structures @, to €,
of Table II1.

Stochastic optimization processes using genetic
algorithms are often termed evolutionary,*® which
might suggest an analogy to natural evolutionary
processes. However, the method described here,
like most genetic algorithm approaches employed
in optimization tasks, differs from natural evolu-
tionary processes in various respects. The se-
quences have to adapt successively to two different
requirements: (a) stability optimization, starting in
the target structure, and (b) folding optimization,
starting in the (¢*), random coil. In addition, the
population size is kept fixed throughout the opti-
mization irrespective of the average fitness. An ex-
tinction of the population is thereby prevented ar-
tificially. For these reasons, the described method
is more reminding of an artificial breeding process
than of natural evolution. We term it “simulated
breeding’’ to emphasize this point.

A Population of Folding Sequences

A closer look at the optimizations described above
reveals that the algorithm does not converge to a
single sequence in any of the cases studied. Even
after the average fitness has reached a nearly con-
stant high level, mutation and crossing-over events
continue to generate new sequences, as is shown in
Figure 8. There is only a very small fraction of back
mutations, and the number of sequences generated
increases linearly with generation number. On the
average, each tested sequence was present in 2.5
copies and survived for less than two generations.
The reason for this behavior is to be sought in the
high dimensionality of sequence space. Even when
there have already been generated several hundred
different sequences, the probability to encounter
one of them again in a random walk in a space of
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FIGURE 8 Evolution of sequence populations during
the folding optimization procedures of Figure 6. The life
span of each sequence is shown. (Top) Optimization for
chain structure @g. (Middle) Optimization for chain
structure @y. (Bottom) Optimization for chain struc-
ture €@ ,.

100 dimensions is very small since each mutation
step will usually lead into a new direction.

Since the mutation rate and the average lifetime
of the sequences remain unchanged even late dur-
ing the optimization procedures, i.e., when the fit-
ness i1s generally high, one expects the algorithm to
yield not only one, but several folding sequences
during each run. To prove this, we have selected
the 100 sequences with the highest average fitness
values from the folding optimization in Figure 6
(bottom), i.e., for chain structure @,,. Each of
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these sequences was subjected to 100 folding exper-
iments to estimate their respective fitness more ac-
curately. The average fitness values for the se-
quences lie in the ranges from 0.34 to 0.6; there-
fore, all these sequences are at least moderately
good folding sequences.

As a distance measure between two sequences
{A4,} and { B, } in sequence space, we chose the
Hamming distance

H({’/’I;*{Bl:):Z“_a(AMBI)] (2)

1

with § being the Kronecker symbol. For a popula-
tion Py of N sequences {4, },,n=1,.... N, we
define the mean Hamming distance within that
population by

— 2
H(P)y=——2
I Sa

N N
X z Z H({A,},,,,J,A,},,) (3)

bl

Given 8 different monomer types. the mean Ham-
ming distance for the population of all 8/ possible
sequences of length L is found to be H(Py) = L.
Now let | < s < 100 denote the rank of the hundred
best folding sequences. and P, = {{A4,},, ....
{A,3,}, the population of the s best folding se-
quences. Figure 9 (top) shows the fitness F({ A4 !,)
as a function of H(P,). for s = 1 to s = 100. The
resulting graph decreases only slowly over a range
of H . indicating that several very good folding se-
quences can be found within a certain region in se-
quence space. This is in agreement with the obser-
vation, reported above, that the optimization pro-
cedure does not converge to a single sequence: it
does not have to, since there are many different se-
quences that fold nearly equally well. Figure 9
(bottom), shows the mean Hamming distance of
the populations P,, for s = 1 to s = 100, as a func-
tion of s. H( P,) reaches a value of about 7 for s = 4
and remains below 8.5 up to s = 83. This indicates
that the folding sequences in the population Py; are
distributed approximately uniformly over a patch
in sequence space that can be charactenzed by a
mean Hamming distance of about 8§ between its in-
dividual sequences.

As to be expected from this value, the various
folding sequences found are homologous. Figure
10 shows the probability distribution of the mutual
overlap Q({4,}.{B,})=L—~H({A,},{B;})be-
tween any two sequences {4, }, { B} in Py, the
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FIGURE 9 Population of the 100 best folding se-
quences from the folding optimization in Figure 6,
(bottom). (Top) The fitness F({ 4, },) is shown as a
function of the mean Hamming distance, H( P,), for
rank s = 1, ..., 100. Explanation in text. { Bottom) The
mean Hamming distance, F( P,), is shown as a function
of rank s.

population of the 83 sequences with an average
fitness higher than 0.5. Two sequences picked at
random from this population will coincide, on the

75 80 85 90 95 100

FIGURE 10 Distribution of mutual overlaps Q be-
tween sequences in the population Pg;, discussed in the

text. The distribution is centered around @ = 91.5.
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FIGURE 11 Comparison of the sequences in the pop-
ulation Py discussed in the text. For each position, the
frequency distribution of monomer types in the popula-
tion is indicated: for clarity, individual monomer types
are not given. For most of the positions, a single mono-
mer type clearly dominates all others. Positions 30, 41,
47, and 62 are the most variable ones. A look at the target
structure, indicated by dotted lines and ““Helix" labels,
does not give any clue as to why these positions should
be allowed more variation than others.

average, at 91.5 out of their 100 monomers.
Twenty-three out of 100 positions in the sequences
of Pgy are strictly conserved. In addition, at most
of the remaining positions, a single monomer type
clearly dominates in the population. Figure 11
shows the frequency distribution of monomer
types over the 100 positions within the sequence
population Pg;. The folding performances found in
Py, are presented in Figure 12, Itis clearly seen that

Stability , ,

4000

Folding ,
time

90
2000

1000

Success
. rate L

FIGURE 12 Folding performance, represented as in
Figure 3. for the sequences of population Pg; discussed in
the text.



they form a cluster in the “folding corner™ of the
figure.

Supplement to the Described Method

When looking at Figure 6. one notices that the bot-
tleneck of the described method for the breeding of
folding sequences lies at the transition from stabil-
ity optimization to folding optimization. It cannot
be guaranteed that sequences that are stable in their
target structure will reach this structure during
folding experiments. In Figure 6 (bottom), the
folding fitness remains zero for 8 generations after
completion of the stability optimization. During
this period. the algorithm performs an unbiased
random walk in sequence space until it first hits a
sequence that reaches the target structure. From
then on, the algorithm proceeds to yield folding se-
quences within about 150 generation cycles. How-
ever, such a course of the optimization process is
highly unlikely. Normally, a random walk in se-
quence space will not reach a sequence with fitness
greater than zero in a reasonable amount of time.
This problem can be illustrated by looking at an-
other interesting optimization course. As in Figure
6 (bottom), we chose @, (Table 1I1) as the target
structure. However, this time we started the opti-
mization algorithm not with ten copies of RS, but
with ten copies of RS, (Table II). The sequence
RS, is, not surprisingly, completely unstable in the
chain structure @,,. However, during the stability
optimization, each newly generated sequence starts
each simulation run in the target structure. There-
fore, the optimization algorithm will, in a reason-
able amount of time, be able to accumulate muta-
tions that selectively stabilize the target structure.
As the left-hand part of Figure 13 (top) shows, the
stability optimization produced sequences that are
extremely stable in the target structure after about
1200 generations. However, the population of se-
quences obtained after 1500 generations of stabil-
ity optimization did not contain any folding se-
quences; even after 20 generations of folding opti-
mization, no folding sequences were obtained
(data not shown). To overcome this difficulty, we
introduced a series of intermediate optimization
steps during which we selected for tolerance toward
disturbances of the target structure. The genetic al-
gorithm runs as follows: (A ) The sequences are set
to a starting structure given by their target structure
disturbed by changing D randomly chosen local
conformations to ¢*; (B) the relative amount of
simulation time spent in the target structure during
10 simulation runs of 250 MC steps is taken as the
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FIGURE 13 Optimization for chain structure @,
starting with random sequence RS,. (Top) Overview:
Starting from RS, a sequence completely incompatible
with, i.e., unstable in, the target structure, the stability
optimization nonetheless generates sequences stable in
@y in a reasonable amount of time (note that, due to
the shorter simulation time employed, 25 generations of
stability optimization take only as long as a single gener-
ation of folding optimization). ( Bottom) Detail: Transi-
tion from stability optimization to folding optimization
via tolerance optimization.

fitness F; (C) and (D) all other parameters remain
as described above for stability and folding optimi-
zations.

Figure 13 (bottom) shows a detail of Figure 13
(top). After completion of the stability optimiza-
tion, 50 generations of tolerance optimization to-
ward D = 4 disruptions of the target structure fol-
lowed. The resulting sequences were able to cope
with D = 10 disruptions (immediately after the sta-
bility optimization, none of the sequences could
tolerate 10 random disruptions and still find back
to the target structure; not shown). After 51 gener-
ations of optimization, D was raised to 20. After
46 generations at D = 20, moderately good folding
sequences had already been obtained. One hun-
dred fifty generations of folding optimization then
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yielded excellent folding sequences; the best one
found,

CBBAAEBCBGBBEBBEDDGDBBBBB
FAGEBCFBFCCEHFDDGABEEEBDB
BCBHAAFBABAHBDDCBFAACFDDE
FBBCDACDEEDDAAEEEFHACBBEB

had a fitness of 0.59, comparable to the best se-
quences discussed in the context of Figures 6 and
9. Surprisingly, however, this sequence does not re-
semble the sequences of the population Pg; dis-
cussed above; at 61 of the total 100 positions, it car-
ries monomer types that are not present at their re-
spective positions in any of the sequences in FPg;.
Thus, the folding sequence obtained here belongs
to a completely different region in sequence space.
We have here the interesting result, known from
real proteins, too, that nonhomologous sequences
may adopt the same structure.

SUMMARY AND OUTLOOK

Simplified models have contributed much to the
present views on the generic properties of protein
folding. The question how to systematically obtain
folding sequences in such minimalist protein fold-
ing models has only recently been addressed. For
the model studied here, straightforward ap-
proaches, based on consideration of the target
structure only, usually fail to produce folding se-
quences. Here, we presented an alternative ap-
proach to the problem. We opt for a folding crite-
rion that requires sequences to fold fast and repro-
ducibly to their target structure and to be stable in
this structure. Such sequences will spend a maxi-
mum amount of simulation time in their target
structures during simulated folding experiments.
Given such a specific, quantitative folding crite-
rion, the design of folding sequences amounts to an
optimization problem on a fitness landscape over
sequence space. However, this fitness landscape
will, in general, be rugged and, therefore, difficult
to study. Therefore, we have devised a stochastic
optimization procedure based on genetic algo-
rithms to select folding sequences. Sequences are
first optimized with respect to their stability in the
target structure. In a second step, sequences are se-
lected that fold fast and reproducibly to the target
structure and are stable there. Where necessary, an
intermediate “‘tolerance optimization™ step may be

included during which sequences are selected that
are able to return to their target structure after the
structure has been randomly disturbed.

This algorithm of “‘simulated breeding™ was ap-
plied successfully to obtain folding sequences for
various target structures. This result puts us in a
position to study the characteristics of folding se-
quences in our model, with the hope of gaining new
insights into dynamical processes resembling pro-
tein folding. Already, there is evidence for a pivotal
role of kinetic preferences for some of the se-
quences studied. In addition, we have shown that
nonhomologous sequences may fold to the same
target structure, as is known from proteins, too.
More detailed studies of the kinetics of folding pro-
cesses in the model are under way.

APPENDIX A: MICRO-, MESO-,
AND MACROSTATES

The free energy fof a system is given by

Bf=1n 2 exp[—BE(x)] (A1)

where 8 = (kyT)™', with T temperature and kg
Boltzmann’s constant. The summation ranges
over all microstates x of the system, e.g., all possible
combinations of atomic coordinates. In the model
presented here, the system is described by chain
conformations { ¢; } . Each of the three local confor-
mations (4, ¢, ¢*) is represented by numerous
different microstates, and therefore, the chain con-
formations { ¢, } can be considered macrostates of
the system. These macrostates are assumed to
cover all the possible microstates of the system. In
addition, in the approximation leading to Eq. (1),
all the microstates contributing to the same mac-
rostate are assumed to have the same energy.
Hence, letting g({ o, }) be the number of micro-
states belonging to the macrostate { o, }, we can
write

exp[B8/1= 2 exp[—-BE(x)]

RY

2 g({o;i})exp[—BE({e })]

o

= 2 exp[~BE({a;})+ S({0,})/ks]

'
Lo

= 2 exp[=BF({0:})] (A2)

Joif



Here, the entropy S(] o, | ) of a macrostate { g, } is
given by S({0,}) = ks In[g({a, })], and we have
BF = BE — S/ky. In the model presented here, we
use relative entropies

Sn:l({”! }):S({Ul })750
1
= > AS(o,.4,) (A3)

I

S, is chosen so that the chain conformation (¢*);,
in which all L monomers are in ¢' conformation,
is assigned a relative entropy of S.u[(¢ ')} = 0.
Since the relative entropy of any chain conforma-
tion is easily calculated [compare Eq. (A3)], the
choice of chain conformations as system coordi-
nates is a useful one. Note that, while fis the ther-
modynamic free energy of the system, F denotes
the free energy of a specific macrostate. Comparing
the first and last lines of Eq. (A2). one finds that
the role of F, Eq. (1). in a model description using
chain conformations is analoguous to that of the
energy E . i.e., the Hamiltonian. in a model descrip-
tion on the basis of microstates.

The situation becomes more complicated with
the introduction of chain structures as defined in
the text. These are macrostates with respect to the
chain conformations, which, in turn, can be con-
sidered mesoscopic states now. The number of
chain conformations corresponding to a particular
chain structure is not always easily determined. For
example, the chain structure @ = ,5,3(;,3 of a sys-
tem with length 1. = 20 is found to represent 572
different chain conformations: the random coil
section **[3]" corresponds to the |1 local confor-
mations c¢tcte’. et et el
ctere, et fetet, ethet, ethet, Chet,
¢*he; in addition, the random coil section of
length 4 at the front end corresponds to another
3.2 — 2 = 52 local conformations. yielding a total
of 11.52 = 572 chain conformations with identical
chain structure. The different chain conformations
corresponding to any chain structure may differ in
their F values. Therefore, the Hamiltonian has no
well-defined value for a chain structure. For an ap-
proximate characterization of a chain structure €,
we define the lowest F value among the contribut-
ing chain conformations as the chain structure’s F'
value, F(@).

+

APPENDIX B: REMAINDER STOCHASTIC
SAMPLING WITH REPLACEMENT

When applying genetic algorithms, there are vari-
ous ways of generating a new population of chro-
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mosomes once the fitness values for the current
population have been determined.** The *‘remain-
der stochastic sampling with replacement”™ proce-
dure consists of the following steps: (A) For any
chromosome C,,j = 1,..., N, of the current pop-
ulation, the probability to appear in the new popu-
lation is given by p, = F(C))/Z,F(C)). where
F(C)) stands for the fitness value of chromosome
C,. (B) For each chromosome with p, = N"', one
copy is taken to the new population, and p, is low-
ered by N', until p, < N '; thereby, the survival
of at least one copy of the most successful chromo-
some is ensured. (Note, however. that this copy
may be altered by subsequent mutation or cross-
ing-over.) { C) The remaining vacancies in the new
population are filled by choosing randomly among
the current chromosomes, selecting chromosome
C, with probability p,.
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knowledges a stipend from the Studienstiftung des
deutschen Volkes.
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